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ABSTRACT: In this work, we first report the acquisition of new
experimental data and then the development of quantitative
structure−property relationships on the basis of sorption values for
neat compounds and up to quinary mixtures of some hydrocarbons,
alcohols, and ethers, in a semicrystalline poly(ethylene). Two
machine learning methods (i.e., genetic function approximation
and support vector machines) and two families of descriptors (i.e.,
functional group counts and substructural molecular fragments) were
used to derive predictive models. Models were then used to predict
sorption variations when increasing the number of carbon atoms in a series of hydrocarbons and for n-alkan-1-ols. In addition to
the performed internal/external validations, the model was further tested for surrogate gasolines containing ca. 300 compounds,
and predicted sorption values were in excellent agreement with experimental data (R2 = 0.940).
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■ INTRODUCTION
The systematic use of alternative fuels and especially biofuels
respecting durability criteria appears as a promising solution to
the problem of climate change, reduction of greenhouse gas
emissions and wastes, fuel availability at a reasonable cost, etc.1

Biofuels can be considered as mixtures of renewable molecules,
such as normal and iso-paraffins, naphthenic and aromatic
compounds, normal and iso-olefins, alcohols, ethers, and
esters.2 The composition of fuel blends constantly evolves
and also varies from one country to another. Materials
compatibility is of major concern especially as the fuel
composition changes and with the consideration of oxygenated
compounds in the pool of renewable molecules. Indeed, the
introduction of this latter family of chemicals may lead to
problems of corrosion of metallic materials3 and degradation of
polymeric materials.4 The use of corrosion inhibitors as fuel
additives has been proposed to reduce corrosiveness effects on
metallic pieces in contact with alternative fuels.5

Polymeric materials in contact with biofuels may be subject
to deformations such as swelling caused by solvent ingress in
their structure (permeation) leading to strong modifications
and loss of their initial physical and chemical properties. One of
the proposed solutions to address this problem is the use of a
multilayer structure including barrier polymers.6 Poly(ethylene)
and poly(amide) are typically polymeric materials encoutered
for tank and fuel line applications, respectively. A limited
number of works have been published in the literature on the
area of compatibility of such polymers with alternative fuels,
and experimental data are scarce.4,7−11

The permeability (P), which is defined in eq 1 as the product
of the diffusion (D) and the solubility (S), is an indicator of the
amount of solvent ingressed in tested polymeric materials.

=P DS (1)

Maru et al. compared interactions between biodiesels and two
kinds of materials used in storage and automotive tanks
showing that properties of high density poly(ethylene)
(HDPE) are more affected by biodiesel compared with those
of carbon steel.4 Berlanga-Labari et al. studied the compatibility
of HDPE with gasoline blends containing 5% and 10% ethanol
using infrared spectroscopy and sorption tests.7 The authors
reported only small variations of HDPE physical and chemical
properties after immersion tests of thousands of hours duration.
During a screening procedure, the systematic use of such
experiments to test the compatibility of new polymeric
materials with new alternative fuels seems to be unrealistic,
and the development and use of robust predictive models
should be more appropriate.
Works in the literature deal with the quantitative prediction

of permeability for polymeric materials.12−17 Memari et al. have
studied gas mixture (H2, CO2, and CH4) sorptions in
poly(ethylene) below its melting point using Monte Carlo
(MC) molecular simulations.14,15,17 From a technical point of
view, the consideration of larger permeant molecules such as
hydrocarbons, alcohols, or ethers may lead to problems of
insertions and thus problems of convergence. Moreover, the
inclusion of molecular simulation techniques such as MC or
molecular dynamics (MD) into high throughput screening
procedures still represents a challenge, and approaches based
on the concept of quantitative structure−property relationship
(QSPR) appear more appropriate.18 On the basis of eq 1,
Teplyakov and Mears proposed the following empirical relation
to predict the permeability of inorganic gases such as N2, O2,
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CO2, and C1−C4 hydrocarbons gases through different
polymers:19

= + = − + − ϵP D S K K d K K klog log log ( / )1 2 ef
2

3 4
(2)

where def is defined as the effective molecular diameter
determined by comparing log D data for various gas−polymer
couples, ϵ/k values were determined from log S data for specific
polymers, and K1, K2, and K3, and K4 are coefficients regressed
on log D and log S data, respectively.19 However, it is necessary
to explicitly understand the relation between both polymer and
permeant molecular structures for the development of suitable
membrane materials. Hence, Patil et al. showed that it is
possible to correlate the permeability of gases or liquids
through polymers with some molecular features such as
molecular connectivity, molecular polarizability, and molecular
weight.20 These authors proposed three multilinear models
each applicable in the cases of (i) a specific polymer
(poly(vinyltrimethylsilane), poly(isoprene), and poly-
(urethane)) and (ii) solely for neat hydrocarbons and alcohols.
The group of Izaḱ et al. have during the last 10 years
continuously experimentally and theoretically investigated gas
and liquid sorption into polymers.21−25 Very recently, Randova ́
et al. have proposed a method based on thermodynamic aspects
to predict sorption of pure organic liquids into various
polymers.26 These last years, we have devoted great effort to
the development of QSPR based models for the prediction of
various property values and shown that such approaches are
applicable to simple mixtures and relevant for alternative fuel
blends.1,2,27−30

In the present work, we report the acquisition of new
experimental sorption values for neat compounds and up to
quinary mixtures of hydrocarbons, alcohols, and ethers in a
semicrystalline poly(ethylene). Additionaly, we present QSPR
based models developed using two machine learning methods,
two different families of descriptors, and the new experimental
data. The so obtained models are then used to predict the
sorption of some alternative fuels in poly(ethylene). The paper
is organized as follows: we present experimental data
measurements and the strategy followed to build new QSPR
based models, the predictive performance of models is then
exposed and discussed, and the last section gives our
conclusions.

■ MATERIALS AND METHODS
Experimental Procedure. Materials and Sample Prep-

aration. A medium density poly(ethylene) (MDPE) was used
during our measurements. MDPE pieces used were in the form
of plane sheets with thickness of ca. 3 mm, extracted from an
extruded band. This MDPE presents excellent resistances to
crack formation and growth and incorporates an optimized
formulation of additives (antioxidants) to provide a long-term
stability in service. Its density (ρ = 0.937 ± 0.02 g·cm−3) was
determined by weighing samples both in water and in toluene.
The crystalline fraction of the MDPE was obtained from
differential scanning calorimetric measurements with a heating
rate of 10 °C min−1 and was found to be 50.2% ± 0.5%.
All pure liquids (linear and branched alkanes, naphthenic and

aromatic hydrocarbons, alcohols and ethers) with high purity
grade were purchased from Merck, and no additional
purification was performed. All liquids were used to generate
from binary to quinary mixtures for which we measured
sorption values in poly(ethylene). For fluids expected with high

sorption values in poly(ethylene) (i.e., normal paraffins, iso-
paraffins, olefins, and naphthenic and aromatic compounds), we
have used small rectangular pieces (40 mm × 8 mm × 3 mm),
with a mass of about 0.9 g. For fluids expected to be poorly
soluble in poly(ethylene) (i.e., oxygenated fluids), we have used
larger and heavier (mass of about 6 g) rectangular samples to
increase the precision on measurements.
Three commercial gasolines were used as bases to elaborate

12 blends with various amounts of ethanol, methyl tert-butyl
ether (MTBE), and ethyl tert-butyl ether (ETBE). The
Carburane software, developed at IFP Energies nouvelles,31

was used to post-treat gas chromatographic data of gasolines in
order to identify and quantify their representative compo-
nents.32,33 This approach allows us to identify precisely a
representative composition for a gasoline (a mixture containing
ca. 300 compounds) which can be used for instance, as input of
atomic/molecular-level simulations34 or QSPR models. Com-
positions of the three gasolines are illustrated with circle charts
on Figure 1, showing, for instance, the high paraffin content

(ca. 75%) of one gasoline compared with the two remaining
ones (ca. 45%). The highly paraffinic gasoline contains low
amounts of unsaturated compounds compared with the two
other considered gasolines.

Sorption Measurements. Measurements of liquid sorption
in a MDPE were performed using a gravimetric method. The
polymer samples (pieces of 0.9 or 6 g, as discussed previously)
were immersed in a large excess of studied liquid in a closed
glass vessel. Glass vessels were placed at ambient temperature
(20 ± 1 °C) in an air-conditioned laboratory, for the duration
of the sorption experiments. Polymer samples were daily
removed from liquid, wiped with precaution, and weighed. The
necessary time for polymer−liquid system equilibration
depends on the studied system. The shortest equilibration
time was observed for the toluene for which a total duration of
approximately 200 h was measured. In contrast, the longest
equilibration time observed was measured after up to 2000 h of
immersion for the 2,2,4-trimethylpentane. Figure 2 shows three
sorption curves for toluene, n-hexane, and 2,2,4-trimethylpen-
tane. Figure 2 demonstrates the excellent repeatability of our
measurements. Indeed, some selected tests were doubled to
obtain an estimate of the repeatability of the sorption
experiments. For instance, we obtained coefficients of variation
of repeatability of 1% in the cases of toluene and n-hexane and
1.5% in the case of 2,2,4-trimethylpentane.

Modeling Methods. Data Sets. One of the keystones for
the accuracy of predictive QSPR is the quality of the database
used to develop models. Sorption values in the database were
obtained following the experimental procedure described above
and are hereafter expressed in mg·g−1. Because measurements
have been performed by the same operator on a unique device,
it ensures optimal repeatability conditions, leading to minimally

Figure 1. Circle charts of compositions for the three used commercial
gasolines.

ACS Combinatorial Science Research Article

DOI: 10.1021/acscombsci.5b00094
ACS Comb. Sci. 2015, 17, 631−640

632

http://dx.doi.org/10.1021/acscombsci.5b00094


noisy experimental values, noting that recent works showed
that the robustness of QSPR based models do not necessarly
improve when trained upon experimental data from stand-
ardized conditions.35 The database contains 80 sorption values
measured at room temperature for neat compounds and up to
quinary mixtures of hydrocarbons, alcohols, and ethers in a
semicrystalline poly(ethylene). Data points are as follows: 27
neat compounds ranging from C5 to C10, 46 binary mixtures, 5
ternary mixtures, and 2 quinary mixtures. Table 1 presents an
extract from this database and gives sorption values measured
for neat compounds.

During the past decade of development of QSPR models, the
use of external validation has been shown as necessary to
ensure its ability to extrapolate to new compounds, that is, out
of the database used for the model development.36 Its popular
version is the n-fold cross-validation (n-CV) in which the data
set is randomly split on approximately equal n portions. An
aggregate of (n − 1) portions forms the training set on which
the predictive model is built, the remaining portion constituting
the test set; no data point belonging to external sets is used to
derived models. This procedure is repeated n times choosing at

each new fold another portion of data as a test set. The subject
of external validation for QSPR analysis of mixtures has recently
been treated by Muratov et al.,37 and the strategy of external
validation applied in this study is “mixture out”. We used a 5-
CV procedure; consequently, the training and test sets
represent 80% and 20% of the database, respectively.

Molecular and Mixture Descriptors. From conclusions
drawn in previous studies we chose to work with two sets of
descriptors.1 First, functional group count descriptors (FGCD)
gather some counts of groups identified as relevant under
chemical aspects. Table 2 gives a list of FGCD under

consideration in this study, labeled from X1 to X13. The
FGCD labeled X13 denotes the number of carbon atoms
involved in a ring. As Patil et al. did,20 we have also computed
the molar mass (MM) of neat compounds in the database, this
information being used as an additional descriptor. Such a
simple representation of compounds has been shown to
provide relevant descriptors usable in QSPR procedures.2 In
the case of FGCD containing at least one heteroatom, we
considered their exponentiations as new descriptors. For
instance, X12 to the power two, three, and four have been
added in the descriptor set. Simplified molecular input line
entry specification (SMILES) notations were assigned to each
neat compound belonging to the database. FGCD were
counted using the Open Babel’s SMILES arbitrary target
specification (SMARTS) matching functionalities,38 and
SMARTS codes corresponding to FGCD are given in Table 2.
The second set of descriptors was constituted using the

ISIDA fragmentor software39 to identify and count relevant
substructural molecular fragments (SMFs).40,41 To establish
SMFs, there exists various types of molecular subgraphs such as
sequences and augmented atoms. Sequences consist in
successions of atoms and bonds, atoms only, or bonds only
in the molecular graph. Augmented atoms stand for a given
atom with its nearest neighboring including atoms and bonds,
atoms only, bonds only, or atom pairs. These latter represent a
kind of extension of FGCD including surrounding of chemical
functions. Thus, we generated augmented atoms with frag-
ments containing from two to three atoms and bonds. Table 3
gives a list of SMFs used in this study, labeled from S1 to S40.
In the case of SMFs containing at least one heteroatom, we

Figure 2. Time evolution of the sorption in a medium density
poly(ethylene) for n-hexane, toluene, and 2,2,4-trimethylpentane.
Empty and filled symbols denote the first and second series of
performed sorption measurements, respectively.

Table 1. Extract from the Database Used in This Worka

compound
sorp

(mg·g−1) compound
sorp

(mg·g−1)

n-pentane 57.3 n-propylbenzene 76.1
n-hexane 59.2 1-pentene 64.8
n-octane 55.7 1-hexene 63.8
n-decane 60.3 1-heptene 62.9
2-methylpentane 60.3 1-octene 62.1
2,2,4-trimethylpentane 53.3 1-nonene 61.1
cyclohexane 93.6 1-decene 60.1
tetraline 90.1 1,5-cyclooctadiene 92.3
benzene 82.8 methanol 0.7
toluene 87.0 ethanol 1.0
m-xylene 90.0 propan-1-ol 1.3
1,3,5-trimethylbenzene 94.7 butan-1-ol 1.6
1,2,4,5-tetramethylbenzene 98.4 2-methylpropan-1-ol 0.6
ethylbenzene 79.7

aOnly sorption values measured for neat compounds are reported.

Table 2. List of the Functional Group Count Descriptors
(FGCD) Used To Describe Hydrocarbons, Alcohols and
Ethers in the Database, And Associated Symbols and
SMARTS Codes

symbol FGCD SMARTS

C X1 [C,c]
H X2 [H]
-CH3 X3 [CX4H3]
-CH2- X4 [CX4H2]
>CH- X5 [CX4H1]
>C< X6 [CX4H0]
CH2 X7 [C]=[CX3H2]
CH- X8 [C]=[CX3H1]
•>CH X9 [cX3H1]
•>C- X10 [cX3H0]
C-O-C X11 [C]-[O]-[C]
OH X12 [OH]
Nb in ring X13 [R]
molar_mass MM NA
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considered their exponentiations as new descriptors. For
instance, S29 to the power two, three, and four have been
added in the descriptor set.
To compute FGCD and SMF decriptors and thus extract

features of mixtures, we considered in a first approximation
only linear combinations of pure component descriptors
weighted with the associated molar fractions, xi. This approach
has already been applied with FGCD and SMF for the
modeling of mixture properties such as the optimal salinity of
surfactants.42 In the case of descriptor X1, the corresponding
descriptor for a mixture X1mix, is defined as follows:

∑=
=

xX1 X1
i

N

i imix
1 (3)

where i runs over the N constituants in the mixture. Descriptor
values are then standardized using the mean and the standard
deviation of the initial descriptor values.
Machine Learning Methods. The genetic function approx-

imation (GFA)43 as implemented in the Materials Studio
software44 was used to build multilinear models. The GFA was
chosen for its ability to identify and combine the most relevant
descriptors over a large number of molecular features. The GFA
procedure consists in iterations of selections, crossovers, and
mutations, coupled with objective criteria such as the well-
known coefficient of determination (R2) in order to extract the
best fitting models. In this work, the adjusted R2 was used as the
objective criteria, and k, the maximum number of descriptors
that can be included in the final model, was fixed to 14 in order
to respect the statistical criteria n ≥ 4k, where n is the number
of data points in the training set.45 The initial population (i.e.,
number of equations) was set to 500, and the maximum
generation number to 100000. This procedure was performed
on each of the five training sets.
The support vector machine (SVM)46 from the Libsvm

package47,48 was used to generate ϵ-SVM regression models.
This method attempts to find a function that fits the data as
flatly as possible (by using an ϵ insensitive loss function) while
minimizing the number of support vectors; such procedure is
known as structural risk minimization. The kernel function
K(x,x′), used in this work is the radial basis function (RBF)
kernel defined as follows:

′ = γ− − ′K x x( , ) e x x 2

(4)

where x and x′ are sample vectors and γ is a parameter related
to the averaged euclidean distance between two instances in the
sample. While faster methods have been recently proposed to
optimize SVM parameters such as those based on intercluster
distances in the feature space,49−51 the cost (C), γ, and ϵ were
optimized using a grid search method. The grid dimensions
were chosen so that C ∈ [2−7, 2−6, ..., 26, 27], γ ∈ [2−20, 2−19, ...,
219, 220], and ϵ ∈ [2−8, ..., 28]; the training data and each {C, γ,
ϵ} combination are used to train an SVM model. SVM models
are then used to classify test data, and the optimal region of the
{C, γ, ϵ} grid is determined on the basis of both root mean
square error (RMSE) and R2 values. The surrounding of the
optimal region of the {C, γ, ϵ} grid is then explored in detail,
and the best {C, γ, ϵ} set of parameters is deduced from RMSE
and R2 values on the test set. For each pool of descriptors, the
n-fold cross-validation procedure has been applied twice as
recently performed by Muller et al.42 The general model’s
performance has been assessed in 5-CV. However, in order to

optimize parameters of the SVM method, an additional 6-CV
was applied to the training set on each fold.
The bagging technique is then applied, it combines models in

such a way that the obtained consensus model is more
predictive and robust than individual models, and the
consensus model that exhibits the best performances is
selected. The selection of best models is performed using
statistical criteria such as the average absolute error (AAE),
RMSE, R2, and the concordance correlation coefficient
(CCC).52 Chirico et al. have shown that the use of this latter
coefficient is advocated considering various scenarios such as
location shifts, scale shifts, and location plus scale shifts.53,54

Applicability Domain. Among the numerous existing
approaches,55 the leverage approach (Mahalanobis distance
from the structural centroid of data points in the training set)
has been followed to verify whether external candidates lay in
the applicability domain (AD) of multilinear models.36 The
leverage was measured through hi, the diagonal elements of the
Hat matrix, H, which is defined as follows:

= −H X X X X( )T 1 T
(5)

where X is the matrix of descriptors used in the predictive
model for data points belonging to the training set. H is an m ×
m matrix, with m being the number of data points in the
training set. For external fluid candidates, Hat values, hi, were
computed using

χ χ= −h X X( )i i i
T 1 T

(6)

with χi being the vector of descriptors associated with the
external fluid candidate i. Williams plots are an easy way to
determine whether a fluid candidate lies in the AD45 and
correspond to the plot of the standardized residuals as a
function of the Hat values. Using this representation, a
prediction is considered as reliable if the Hat value is lower
than a limit labeled h*, defined as follows:

ψ* = ̅ ̅ = +h h h d mwith ( 1)/ (7)

where ψ is a coefficient used to tune the AD restrictiveness and
d and m are the number of descriptors selected in the model
and the number of data points in the training set, respectively.

■ RESULTS AND DISCUSSION
In this section, we report various QSPR models to predict
sorption in MDPE a semicrystalline poly(ethylene) for mixtures
of hydrocarbons, alcohols, and ethers. Models were derived on
each training set and performances of models evaluated on
corresponding test sets. Two machine learning methods (i.e.,
GFA and SVM) and two families of descriptors (i.e., FGCD
and SMF) were used, leading to four classes of models labeled
as follows: GFA−FGCD, GFA−SMF, SVM−FGCD, and
SVM−SMF.
All obtained GFA based models are composed of 13 or 14

variables, which is the upper limit imposed during the
development procedure. Equation 8 presents one of the five
GFA−FGCD models developed; the meaning of descriptors is
given in Table 2.

= − + + +

+ − + +
− + −
+ − +

sorp 758.8X1 5.6X7 13.6X8 37.2X9

20.3X10 120.2X12 35.9X13 606.0MM
122.0X11 85.2X11 157.6X12
264.5X12 150.9X12 62.1

2 3 2

3 4 (8)
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Equation 8 is in line with some physical intuitions. For instance,
increment of the number of carbon atoms (X1) results in lower
sorption values, unsaturation (X7 and X8) increases sorption
values, and a naphthenic or an aromatic ring (X13) contributes
to higher sorption values. Table 4 presents for developed
models averages of performance characteristics computed over
the five training/test splittings. GFA−FGCD and GFA−SMF
models show similar performances after the training stage.
Standard deviations reported in Table 4 indicate that
performances for these two classes of models do not vary
significantly with training/test splittings. SVM−FGCD and
SVM−SMF show very similar performances after the training

set stage. From standard deviation values, it seems that
performances of at least one of splittings lead to overall
performance losses. When applied to external sets the SVM
based models seemed to roughly perform better than GFA−
FGCD and GFA−SMF models. In the case of external sets,
RMSE standard deviations computed for GFA based models
are much more important than in the case of the training set.
For each of the four classes of models, a consensus modeling

approach was followed to combine predictions of models
obtained from the five training/test splittings. Figure 3A−D
presents scatterplots of experimental sorptions vs predicted
sorptions for sorption values in the database (white circles),

Table 4. Performance Characteristics for Models Developed Using GFA and SVM Approaches and FGCD and SMF Sets of
Descriptorsa

set GFA−FGCD GFA−SMF SVM−FGCD SVM−SMF

training AAD 3.6(0.2) 3.7(0.1) 3.1(0.9) 2.9(1.4)
RMSE 4.8(0.2) 5.7(0.1) 3.9(1.2) 5.2(0.7)
R2 0.960(0.004) 0.943(0.005) 0.972(0.019) 0.953(0.012)
CCC 0.980(0.002) 0.970(0.003) 0.985(0.011) 0.976(0.006)

test AAD 6.5(0.9) 6.1(1.2) 6.0(1.0) 6.0(1.9)
RMSE 10.0(2.8) 7.9(1.8) 9.3(2.5) 8.1(1.9)
R2 0.662(0.111) 0.784(0.077) 0.710(0.081) 0.753(0.175)
CCC 0.773(0.094) 0.892(0.039) 0.819(0.064) 0.885(0.054)

aPerformance are indicated for the training (64 data points) and test (16 data points) sets. Values stand for means of performance characteristics
obtained on the five training/test splittings, and values in parentheses denote standard deviations.

Figure 3. Scatterplots of experimental sorptions vs predicted sorptions using GFA−FGCD (A), GFA−SMF (B), SVM−FGCD (C), and SVM−SMF
(D) models. Database stands for the 80 fluid candidates, and the validation set contains complex mixtures representative of gasoline fuels.

ACS Combinatorial Science Research Article

DOI: 10.1021/acscombsci.5b00094
ACS Comb. Sci. 2015, 17, 631−640

636

http://dx.doi.org/10.1021/acscombsci.5b00094


and Table 5 presents performance characteristics for best
consensus models computed considering all sorption values in
the database. Clearly, the consensus model SVM−FGCD
performs better than the GFA−FGCD, and the SVM−SMF
performs better than the GFA−SMF on the database (i.e., the
80 data points). No huge difference appears between FGCD
and SMF based models for predictions on the database, except
a data point with a very low sorption value for which the used
pool of SMF descriptors lead to an overestimation of the
experimental sorption value.
Figure 4A,B presents Williams plots for GFA−FGCD and

GFA−SMF models, respectively. Following this approach, only
a few data points are considered as out of the applicability
domains of these two models. In the case of the GFA−FGCD
model, three neat compounds (1,2,4,5-tetramethylbenzene,
2,2,4-trimethylbenzene, and cyclooacta-1,5-diene) and one
mixture (EtBE/EtOH, 0.31:0.69 mol %) are out of the AD.
One can remark that these predicted sorption values are in
good agreement with corresponding experimental data. In the
case of the GFA−SMF model, three neat compounds (benzene,
2,2,4-trimethylbenzene, and ethanol) and one mixture (ETBE/
EtOH, 0.31:0.69 mol %) are out of the AD. The predicted
sorption values for these data points are in good agreement
with corresponding experimental data. It is not surprising that
some of the neat compounds appear as out of the AD because
these data points are located at the outer part of the database
chemical space. This can be graphically observed using a
projection of data points on the two first principal components
from a principal component analysis. In Figure 4A, all
standardized residual of data points are in absolute lower
than 3σ. Figure 4B indicates that the GFA−SMF failed to
predict the sorption of methanol with an absolute standardized
residual greater than 4σ.
An additional external validation of models was performed

measuring sorptions of 12 gasolines in the semicrystalline
poly(ethylene). The studied gasoline are based on three
commercial gasolines in blends with various amounts (up to
85%) of ethanol, MTBE, and ETBE. The compositions of the
three commercial gasolines were determined from the post-
treatement of gas chromatographic analysis using the
Carburane software, resulting in three complex mixtures
containing circa 300 compounds. FGCD and SMF were
computed for each of the 300 neat compounds, and FGCD
and SMF for the 12 complex mixtures were computed using eq
3. Williams plots presented in Figure 4A,B indicate that
gasolines lie in the AD of models. Projections of data points on
the two first principal components of a principal component

analysis revealed that gasolines lie in the center of the chemical
space. Figure 3A−D presents scatterplots of experimental
sorptions vs predicted sorptions for the 12 gasolines (filled
circles), and Table 5 presents performance characteristics for
best consensus models computed considering sorption values
for studied gasolines (validation set). None of the four
predictive models failed in the prediction of the sorption
values of gasolines. Among the four models, the one leading to
the best predictions is clearly the SVM−SMF model. Although
the used pool of SMF descriptors failed in the description of
light alcohols, the SMF based models succeed in the prediction
of the sorption (27 mg·g−1) for a gasoline in mixture with 85
vol % of ethanol.
The SVM−SMF model represents a useful tool to quickly

estimate for a new compound or mixture its sorption in a
semicrystalline poly(ethylene) and thus rapidly check materials
compatibility, avoiding thousands hours of experiments. For
instance, a synthetic fuel candidate molecule, 2,6,10-trimethyl-
dodecane (farnesane), is currently under consideration as an
alternative jet fuel and diesel.56 The use of our SVM−SMF
model returns an estimated sorption of 55 mg·g−1.
The SVM−SMF model can be used to draw tendencies of

the sorption evolution when increasing the number of carbon
atoms in some hydrocarbons and n-alkan-1-ol (see Figure 5).
For all studied families of hydrocarbons, the SVM−SMF model
returns a decrease of the sorption when the number of carbon
atoms inceases. A comparison of the branching effect shows

Table 5. Performance Characteristics for the Consensus
Models’ Predictionsa

set
GFA−
FGCD

GFA−
SMF

SVM−
FGCD

SVM−
SMF

database AAD 4.1 4.0 2.8 2.9
RMSE 5.4 5.8 3.9 4.9
R2 0.945 0.936 0.971 0.953
CCC 0.972 0.967 0.985 0.975

validation AAD 6.5 3.3 3.7 3.0
RMSE 7.9 4.3 4.8 3.6
R2 0.706 0.914 0.893 0.940
CCC 0.869 0.958 0.950 0.973

aDatabase stands for the 80 fluid candidates, and the Validation set
contains complex mixtures representative of gasoline fuels.

Figure 4. Williams plot for GFA−FGCD (A) and GFA−SMF (B)
models. Database stands for the 80 fluid candidates, and the validation
set contains complex mixtures representative of gasoline fuels. The
cutoff limits at 2σ and 3σ (with the standard deviation, σ, equal to 1)
are indicated as horizontal dotted lines, and the critical hat value
h*(for ψ = 3, see eq 7) is represented with the vertical dashed line.
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that at the same number of carbon atoms, 4-Me-alkanes and 4-
Et-alkanes have similar sorption values. However, when the size
of the alkyl group increases, Figure 5 shows that the sorption of
4-Pr-alkanes is ca. 20% lower than that of 4-Me-alkanes and 4-
Et-alkanes. Figure 5 proposes a comparison between the
evolution of sorption for linear hydrocarbons showing that the
sorption of 1-alkenes is about 20% greater than that of its
saturated counterpart. Figure 5 also shows that while the
sorption of n-alkylbenzenes is roughly constant for up to C12
compounds, a linear decrease is predicted for n-alkylcyclohex-
anes. For n-alkan-1-ol molecules, the sorption in a semicrystal-
line poly(ethylene) is reported to increase with the number of
carbon atoms, noting that sorption values for long chain n-
alkan-1-ols tend to match with those of n-alkanes. Randova ́ et
al. have recently reported similar observations regarding the
sorption of pure liquids into polymeric membrane.25

Figure 6 shows predictions carried out using the SVM−SMF
model for methanol/toluene binary mixtures. As discussed
previously, the sorption of methanol is not well predicted.
Predicted values presented on Figure 6 are in a relatively good

agreement with most corresponding experimental data points.
The trend of our experimental data is in line with that observed
by Randova ́ et al.23,24 A maximum sorption behavior is
predicted by the SVM-SMF model for the methanol/toluene
binary mixture, and the predicted maximum sorption (86 mg·
g−1) is reached at circa 0.8 mole fraction of toluene. For mole
fraction of toluene values greater than 0.4, our model seems to
overestimate the sorption of the fluid in a semicrystalline
poly(ethylene).

■ CONCLUSION
Machine learning approaches have been used to model the
sorption of neat compounds and up to quinary mixtures of
some hydrocarbons, alcohols, and ethers in a semicrystalline
poly(ethylene). Experimental data were obtained using our
original experimental apparatus. The generated database has
been analyzed with chemoinformatics tools, and combinations
of two machine learning methods (i.e., GFA and SVM) and two
families of descriptors (i.e., FGCD and SMF) were used to
derive predictive models.
In addition to the usual internal/external validations, the

model was further tested using new experimental data for
gasolines, and the predictions were in excellent agreement with
the data. We performed some predictions for the sorption
variations upon increase of the number of carbon atoms in a
series of hydrocarbons and for n-alkan-1-ols. We also studied
methanol−toluene binary mixtures containing various amounts
of toluene and observed a maximum sorption behavior.
Polymers are widely used in various industrial applications

such as packaging, car industry, and membrane separation,
among others.57 The determination of the sorption of gases and
liquids in polymers is fundamental and must be known before
any applications. Our work shows that when a good quality
database and various machine learning approaches are used and
consensus modeling is applied, the so-obtained predictive
models are powerful tools to estimate a property, in this case
the sorption of chemicals in a semicrystalline poly(ethylene).
The combinatorial use of experiments and chemoinformatics
tools contributes to drastically reducing the time necessary to
quantify polymeric materials compatibility with a fluid
candidate according to its structural characteristics. This work
is a solid step in the efforts of in silico determination of fluid
sorption in polymers and is to be extended to various families
of polymers, conditions of temperature and pressure, and larger
ranges of carbon atom numbers for penetrant chemicals.
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